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Abstract 

We consider the Einstein gravitational field equations coupled to the 

expectation value of the stress tensor in a real scalar field theory with 

arbitrary mass and coupling to curvature. We consider small oscillations of 

the metric and linearize the response of the quantum wave-functional and the 

stress tensor expectation value. In a small time approximation we find 

unstable oscillations for a minimally coupled field and stable oscillations 

in the case of conformal coupling. 
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I. Introduction 

One can often gain insight into the properties of interacting quantum 

field theories by maintaining a semiclassical approximation in which one or 

several fields are classical while the remaining fields are treated quantum 

mechanically. For example, such an approximation works well in obtalning 

the low energy theorems of QED in which the electron is quantized in a 

classical background electromagnetic field (1). The back reaction may be 

approximated by allowing the electromagnetic field to couple to the 

expectation value of the electromagnetic current. 

An analogous class of problems arises in general relativity. We may 

wish to treat the gravitational field classically but consider its response 

to quantum matter fields. Thus, we consider the Einstein field equation 

with the expectation value of the stress tensor appearing on "the right hand 

side." This expectation value is taken in a quantum state of the matter 

fields. The matter field state (wave functional) evolves in the background 

geometry determined by the Einstein equation. Thus, we seek the solutions 

to the coupled pair of equations: 

G YY - A+ = g-&T G, L*\T&\w 

HgIW‘, = ; $.I% 

where the quantum field theory is described by a functional Schroedinger 

equation involving a Hamiltonian, H g, which depends upon the metric g. 

Much work has been done on the problem of quantum field theory in 

curved spacetime(2). In particular, the stress-tensor has been evaluated 

successfully in various background geometries, which involves regularization 
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of the usual short-distance infinities and renormalization. For example, 

(T 
Y" 

> has been evaluated by Bunch, Davies and others in deSitter spate(3) 

in a particular deSitter invariant vacuum state (which we refer to 

subsequently as the "Bunch-Davies" vacuum). There exists a self-consistent 

solution of eqs.(l) in which the rhs of Einstein's equation is this 

expectation value of the stress-tensor. In the conformal limit, jh =0 and 

f =1/6, the value of the Hubble constant determined by this solution is 

H=6Mpl&&j- h w ere N is the number of noninteracting real scalar fields. 

Thus, for a single scalar field we have unrealistically large curvature and 

the neglect of quantum gravity becomes an inconsistency. In the large N 

limit the semiclassical approximation becomes valid. 

The question naturally arises whether the self-consistent desitter 

space solution is stable against small fluctuations. We shall analyse this 

question in the present paper. A proper stability analysis in relativity 

requires that one study arbitrary metric and matter perturbations. However, 

it is quite difficult to calculate the renormalized stress-energy in the 

general case. We shall consider presently Robertson-Walker metrics with 

scale factor a(t). In deSitter space H=a-Ida(t)/dt is a constant Ho. The 

gravitational fluctuations studied here will be small variations in H. We 

will then obtain the linearized response of the quantum wave-functional to 

the metric perturbation through the functional Schroedinger equation. This 

is used to compute the first order change of the expectation value of the 

stress tensor, <Ty,>. Substituting <Tyv>into Einstein's equations gives 

a linear differential equation for the small geometry fluctuation which 

turns out to be a second order oscillator equation. The values of the 

parameters in this equation depend upon the mass and conformal coupling 

parameter of the quantum fields. We will see that the system has stable 
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fluctuations for a conformally coupled field (though it may be unstable to 

more general metric fluctuations). On the other hand, the system is 

unstable to perturbations in H for a minimally coupled (c =O) field, an 

unambiguous statement of desitter space instability. 

The dynamical back reaction problem has been studied for conformally 

coupled massless fields in Robertson-Walker spacetime(4-12). Other formal 

approaches to quantum instability of deSitter space have been given (6,798). 

Extensive numerical work has been done on the semiclassical equation for 

non-conformal fields, focusing primarily upon the quantum effects in the 

very early universe at the quantum gravity phase transition P-12). 

Regularization procedures necessarily spoil conformal invariance and 

there generally occurs an anomalous trace contribution to<T 
v 

). In a 

"conformal vacuum" the entire stress-tensor is determined by the trace 

anomaly. The trace anomaly may be written in a general form involving 

geometrical tensors and two free parameters which depend upon the matter 

content of the theory. Starobinsky(4) found that desitter space was 

unstable to perturbations in H for a particular choice of the signs of these 

parameters and for zero background cosmological constant. In his analysis 

the rhs of the Einstein equation is taken to be the anomaly. Myrvold(5) 

allowed a general cosmological constant and found stabillty or instability 

for different choices of the signs of various parameters. One might think 

that these analyses are general because of the conformal synnnetry 

restricting the expectation value of the stress tensor to be given by the 

trace anomaly. However, conformal symmetry is broken by the anomaly. The 

geometry will be driven away from a conformal metric and the vacuum away 

from a conformal one. Thus, the expectation value of the stress-tensor is 

expected to differ from the anomaly at subsequent times. In the present 



-5- FERMILAB-Pub-85/104-THY 

analysis we will consider more general couplings and arbitrary masses of the 

fields. 

We take the metric signature to be (+,-,-,-), R;#S =- r;Q +. . . , 

Rr v =R",, . d refers always to the spatial dimenslonality. 

II. Semiclassical Einstein Equations 

In our analysis gravity is treated as a classical field theory and the 

stress tensor is given by real scalar quantum fields. We assume a massive 

scalar field theory coupled to the scalar curvature and described by the 

action: 

s = p: 2 = ; p+: I$ ppvcQ -+P% fRq 

We shall work In dtl spacetime dimensions for the sake of dimensional 

regularization and shall perform Dewitt-Schwinger subtractions to obtain 

renormalized quantities (this is equivalent to Pauli-Villars with some small 

subtleties(13)). C onsider a general Robertson-Walker metric of the form: 
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(3) 

The gravitational stress tensor (i.e. the rhs of Einstein's equations) 

is obtained as usual by variation of the action wrt the metric: 

* b&Q= -c f 6& - Jr, @-j,,;") 

(4) 
Alternatively, the canonical stress tensor may be constructed directly from 

the Lagrangian as: 

- cc\ 
I P = pQv2-Q - 3rd iit 

These tensors are not equal in the presence of coupling to the scalar 

curvature, and the canonical object is not conserved. Nonetheless, the 

quantum mechanical Hamiltonian which evolves the wave-functional in 

coordinate time must be constructed out of the canonical stress tensor. In 

Heisenberg picture this guarantees consistency between the operator 

equations of motion and the Heisenberg equations of motion for field 

ooerators.(13) 
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Using the canonical stress tensor we construct a global Hamiltonian on 

the spacelike surfaces with unit normal 

systemC3): 

defined in the coordinate 

c&%&a 
($-$"h= $ (6) 

and the canonical momentum becomes: 

I 
7m = If f $$-- = qT 

To satisfy the equal time conmutation relations: 

c&c,+\, -rr(g+)-J = i is\” SdG-ii0 

substitute: 
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-k s W (Al 
-OK)4 -;\ \ - 3 Scp(x~ i y y(y E ~dk,y, (9) 

Using the Hamiltonian and the operator representation f~or the canonical 

momentum we may write down the Schroedinger equation for the field 

theory: (13,14) 

HgJ(~,t\ =; s i &&,a& -a~+52A5~k,l + bde*.GQ 
4 lrc- ‘iRh~(w((+) = i ~+W,+~ 

w is an instantaneous field configuration. The time dependence is 

carried by %/Iq,t) , which is the amplitude to find the field configuration 

9 at time t. We expand 9 in momentum space: 

5 
A a- 

wii\ = iK.X 
(& %c= 

wt,t, = “/I eXPI-&d~ A'K ACu,t)l~(.\= - i L-L&J 
3 

0’) 

and where we've chosen a gaussian ansatz for q . Thus: 
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and we obtain the equation of motion for A(k,t), or equivalently for 

i- (k,t): 

z &,tJ = r-%f,-d+ h -i?&'?-f+ 5R 65) 

where: 

/i&t) = ad rr(u,tl + c2 1-q 

wtl = &C-t) /* Ct) 

Equation (13) is readily solved in deSitter space when H=Ho is constant. 

For the choice of the Bunch-Davies vacuum(13): 
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where 

(b) Small Oscillations About the Bunch-Davies Vacuum 

Consider a small fluctuation from the classical deSitter space metric 

as: 

t 
ait~ = cl + TaCtI ; I, itI E l-i0 (lb) 

To find set> we will solve the following linear combination of the 

Einstein equations: 

A 

G,, + i’ ;5 ” G;; z 8~ <( - p))/M;, 
z a s 117) 

where: 
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?: - 6’ i? c -$y, 
i+ I 

The expectation values are taken in the state 2y 0 * The 

Einstein-Schroedinger equations determine the self-consistent solution for 

the metric perturbation, %Jwith s$=-?> : q-?>-q-nU as a source. 

In the remainder of this section we calculate Scg-Py 
ce*' 

To calculate the response of the wave-functional to the perturbation of 

the metric let: 

lYu,tJ = I', + AWt,t\ 

The linearized equation for A'? follows upon substituting the perturbed 

expression for H(t): 

i & A W,-t) - 2 AW,*) q = SK&\ 

where: 



-12- FERMILAB-Pub-85/104-THY 

sJt\ = 

and AR is given in eq.(A-9). The solution may be written: 

-t. 

Next we take the expectation value of J-? in the state defined by 

r,+AI’ . This requires performing a gaussian functional integral. The 

details are given in ref.(l3) and the formal result is: 

+n = 5 L&Q d4)(g-T& we) 

= at&i’ .A”K A-1 C’ 
-z- t 10 &)A T ac+P + u-’ - ‘i(R-RJ (g&--f-& - WqTs 

CG 1 

Everything in the integrand is known in terms of the metric perturbation 

5 (t). using eq.(16,20,22). 

The linearized variations of & 
9 1 

-T\q> come from the explicit 

variations of the operators 
3 

and 'P and from the linearized response of 

the wave functional. The typical integrals required for %j--T' are of the 

form: 
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u \ ddu e -i cg&d K P I H’:\Cu$-H;t) ~~~K~~Q?o%~~ 

These integrals are made difficult by the appearance of two different 

time arguments, t and a. As the perturbation vanishes, 1 --X, and the 

above integral becomes zero (since the product of Hankel functions becomes 

real). It is therefore possible to obtain a systemat‘ic expansion in small 

A-t. The product of 4 Hankel functions reduces to 2, and the integrals 

become of a standard Weber-Schafheltlin type. The formal details of this 

expansion are given in the appendix. Essentially this implies that our 

results are valid if the characteristic small oscillation frequency, W , is 

large compared to Ho. 

We compute the momentum space integrals which are straightforward (see 

ref.(l3)) and have dimensional poles at d=3 spatial dimensions. We 

renormalize this regularized expression by expanding in a large mass limit 

and subtracting the nonvanishing terms of this expansion (Dewitt-Schwinger 

renormalization as used by Bunch and Davies in ref.(3); no point splitting 

ambiguities arise when regularization is dimensional). One obtains: 
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SdJ-'>c,g (-q-T, - ~-T\'re*o~fili*cl 

= ;~~~l-a-I?K~)~U;+~-~f~~~.A -23$A+9it(5f-2TJ3j 

+ ‘ll&,@A+f\) + -T - 21.&A’+ $Sf -t 24354 3 (1s) 

where: 

A= \- 6%; vm= ($-\?l-'ICp; 'bf!= c/G: j 

$z \2Te(\+4J\+ +%d(\+ =tJ) -c 2~‘3\0+6f1/%, 

Y* = /u&k 4, 

where ?1, is the digama function. 

(‘lb) 

III.Solutions of the Einstein Equations 

To linear order in 6(t), the Einstein equation (17) becomes: 

i.(t) + 6HvbC+J = 4rk&$ SCg-PSrcM 

where now the rhs is known in terms of %%)from eq.(24). 

One may specify initial conditions by giving Sk\ and then eq.(D') 

determines $$l Th en the Einstein constraint equation determines: 
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sg(tJ = * 

.n rA 

(181 

and one of the dynamical equations fixes . Physically, one thinks of 

generating pressure fluctuations, which induce density fluctuations. The 

Einstein equations then determine the metric perturbations. 

Note that the initial conditions, es.(%) and the Einstein equation 

(17) insures that all the Einstein equations are satisfied (see the 

discussion of Appendix B). 

Substituting eq.(lS) into eq.(X7) and once differentiating yields a 

harmonic oscillator equation for s(t): 

(I+&) it+) -I- 6H,C\+13) ilt\ A- 2 SC-t1 = 0 

d, 9 and Qz are determined from s c -?l 
P rc;r 

Among the various solutions of eq.(27) is the case of pure curvature 

fluctuations when the contribution of the matter fields is much smaller than 

the perturbation from the gravitational field. That is, if H,<<MP 

l/T2 ( h w ere T is the characteristic time scale for variations in 

i t 6H*i Q! 0. These are decaying exponentials. 

1 

Cl It is easy to verify that this solution, and the ones whi 1 follow 

below, are not gauge modes. The d=3 variation in the scalar curvature is 

A R = -6H02(4 S (t) + i)(t)/Ho). Since AR f 0, the metric perturbation 

is physical. 

and L%& 

s ) then 
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Now consider presently the solutions for various values of the coupling 

parameter 5 . 

(i) Minimal Coupling, $ =o 

When 5 =0 we have by eq.(25,26) that d = p = 0 and: 

2 4.4 
* = z%-lFk b %.+4ti-~~*-k)@?-2) + $wi?- z 3 (50) 

One can check that in both high and low mass limits that 
‘L 

G, 1s negative: 

- I42 
&Ml h M@+ob u em 

CdL - 
0 

-dIMI 
f-31) 

PP 6’ 
60 uLe* ms $40 

0 

This implies that the small oscillations are unstable (exponentials; (in 

deriving the high mass limit we use eq.(A.ll)). Consistency with the short 

time approximation used in deriving eq.(s ) demands that Mp,&FHo, where 

N is the number of noninteracting real scalar fields. 

(ii) Conformal Coupling 

When kj =1/6 one finds that d = ~>(5H02), J = G=/(lZH,*), and: 
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In this case &J~ is positive in both high and low mass limits and the 

theory is stable against fluctuations in the metric scale factor: 

There are several different parameter regimes within the conformally 

coupled case that are consistent with the short time approximation, though 

all are exponentially decaying (overdamped) perturbations. If Mp, >> Ho 

then the matter terms are unimportant and one has pure curvature 

fluctuations. If MP14Ho then the curvature terms are unimportant and one 

has pure matter fluctuations with SJ*~? . If Mp, ; Ho then s(t) = 

b(t,)exp(-6Hodt) with d =(lt ~~/(lZH,*))(l+ UF(5H02)‘1 which is order 

unity. 

(iii) General Coupling 

The stability or instability of small oscillations of the metric 

apparently depends sensitively on the coupling of the field to curvature. 

We have not yet carried out a complete study of the behavior of a* for 

arbitrary however in general U% has an infrared singularity. 
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The low mass limit of w' for arbitrary 5 is: 

C &+++?Ab++?) + 21\+4r)o-rg)l~+""j~~+Jo~ 

-; + d-+ 125&+4'i)(26++] I (3+) 

The coefficient of the infrared singular logarithm vanishes only when lj =o 

or f =1/6. 

IV. Discussion 

We have studied the stability of the self-consistent desitter space 

solution where matter consists of a quantized real scalar field (or the 

large N generalization thereof). 

When the field is minimally coupled to curvature the small fluctuations 

become unstable on a time scale of TNM~,/H~*, valid for Ho& >> MPl. The 

conformally coupled case gives stable oscillations of s(t) when Mpl<Hofi, 

and decaying exponentials when Mpl >> Horn 

We remark that the fact that the result does not depend strictly upon 

the combination p t R indicates that the sensitivity to the conformal 

coupling involves the the renormalization effects, and is probably tied to 

the conformal anomaly in some way. Further work is required to elucidate 

this result. 

A more fundamental issue $s the validity of the semiclassical equations 

(1). Horowitz(15) has found that es.(l) leads to the conclusion that 

Minkowski space with a conformal coupling to curvature (hence a 

"new-improved" stress-tensor) is unstable. Since Minkowski space is 
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phenomenologically stable we have that (i) either es.(l) is invalid, (ii~) 

there are no conformally coupled scalar fields (iii) or, perhaps the most 

optimistic possibility, there exist physical boundary conditions which 

should be imposed to rule out unphysical runaway solutions of the 

semiclassical equations. If scalar fields exist (they need not be 

elementary since our analysis applies in limits in which effective scalar 

Lagrangians can be valid) and are not conformally coupled, we would conclude 

that desitter space is unstable. This may provide a natural mechanism for 

the decay of an inflationary phase in the early Universe (1’3). 
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Appendix A 

The integral in eq.(Z+) can be evaluated in d-spatial dimensions in a 

short time approximation. It has the usual dimensional pole at d=3. We 

renormalize by subtracting the matrix element in a Dewitt-Schwinger scheme. 

In desitter space we have: 

< 
P 

-‘p> = 2 y’. = y- $IR- RJ) Tb, + [Y) H,S) 

where: 

A-1 A 

L5;n, = $‘ (m&& Kh (‘cd $?K\ (A-21 

The 3, can be readily evaluated (13917). 

To calculate the first order correction to c y'p, , substitute the 

perturbed metric and wave-functional (eqs.(/b ) and (22)) into eq.(23) for 

~J-T> . Then we have: 
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y-T\ J = L’ -71 - ZCJ’, 

= 1-i I,& + 5(&-IXR-%JI:, - ‘z (y)m- sn,,ly-r,, 

-‘s,ti~($‘)(b*~)J~,, - 5 llCq’> + F(v) M-3) 

where: 

p-41 

. Ir’+ [yju:TLyL- ~w,,e-g[ H:‘Ly\ H:&Tj 
Here ?: =exp(-Ho(t- %)) and Sp)i s sk evaluated at argument k=Hoyexp(Hol) 

in eq.(Zl ). F(Y) contains the product of four Hankel functions. We adopt 

the short time approximation, H,(t-t,)Irl. One can then utilize the Bessel 

function multiplication theorem (see e.g. Abramowitz and Stegun) to expand 

Ht'(Ty) for I-C'-11 & 1 and reduce F(g) to sums of the Jch, . Using 

the Wronskian one finds for real v : 

l2L [- ; (l(k$ p(yl~= 3 

= + rf*I*z-11~~‘(~~t-l~‘(~) I- W-l\ (p-s) 

Further, noting that: 
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t 
r 41 sp) T2v-a I+= 1) = -d&I$-4~) -I- W-d b-6) 0 

one finds: 

FCY\ = 1,a Cl- 4tQ2- tta-s,,\(yqo, + ~$Y~3,J 

(A-7) 

The computation of the gravitational stress-tensor also requires 

0(&X This is straightforward, since: 

<q=, = (I- 4mJ4Q = (L- 4AtTJT,o, b4 

Also, in a Robertson-Walker metric with spatially flat hypersurfaces: 
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%?= - A L-CA+ 1) H1 +2;t 3 

a-R,, = -d.nA2+ lil 
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in d+l spacetime dimensions. 

Finally, performing the momentum integration in (A-3) yields: 

1 l-lb+’ 
&!y?\ = q& r(‘-A1r( 

&Jo) r($+v.j 

rt\-~vy~+.y.\r(+.) 

-f$G ,,;;yJJ) + 3-r 7 (A-l4 

u 

where: 

-F= 2xJd-&k(W~d- 21) -I- 2ScA-\+ 2’1dz2) 

-l- $ [A-\ 4 4-u) (A-II) 
0 

valid for Ho(t-to)&1 and I/, real. In actuality, eq.(A-16) is also valid by 

analytic continuation to U, pure imaginary, as follows. 

F(v ) is not an analytic function of V. However, F(V) does have the 

same functional form for r/ either real or pure imaginary, 
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(A-12) 

where P(Y) is an analytic function of V. Define N(V) by (A-12). Then 

N(Y ) is an analytic function of Y which agrees with F(v) on the real and 

imaginary V axes. We have just evaluated N(V) for v real. Therefore, we 

know N(Y) on the entire 'v plane, and in particular we know F(V) on the 

imaginary axis. 

The expression 'b 
57 

-m has a pole when d=3. Let d=3-C and expand in 

E.; define M=m/Ho, A =l-6t and y*= (l/2 f V, ) where q= r'/r is 

the digamna function. Then: 

%q+-P\ = ,ttx ‘i * q+4 ;H %t’> (A -13) 

+ (Vt t ~J$~H~I, b - QhAlo Al- a)-L.Af 3,I 

f is evaluated in d=3 spatial dimensions. 

To subtract this expression expand eq.(/V$ for large M, keeping terms 

of order M4 to order M(O), and define the renormalized quantity as: 
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sys,, = b Q -n - b’p-?~~,~ 
7 

where syT>,,*, is the truncated large mass asymptotic expression. This 

requires the large M expansion of the digarnna functions: 

zu, t '+- + hbi?- &I’lA+$) --3& + y+ #) 

-/hzc 3 x ' 'IA + A=+ 263+ -! 
+J 

+ . . . (A, IS') 

(Here we display terms through order M -6 which are required in taking 

subsequent limits). 

Substituting eq.(A14) into eq.(Al2) to get S/J-cP> and 
-WY 

subtracting yields the renormalized expression of eq.(S,26). / 



-26- FERMILAB-Pub-B5/104-THY 

Appendix B 

We note that all the Einstein equations have been satisfied(**). Recall 

how the classical Friedman models are solved. One satisfies the constraint 

equation and a dynamical equation: 

G”, ‘% CT’,~ ; G’j ~ C~;;. (W 

and the equation of state. 

In the present work the equation of state is implicit since 
3 

and ? 

are both defined by x . Equation (17) is a linear combination of 

eq.(B-1), so one might worry that the constraints by themselves are not 

satisfied. However, ( G”- T“I );,=O, and eq.(17) together imply that 

G "- T”’ =constant. At t=to the initial conditions of eq.(28 ) fix the 

constant to be zero. 
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